Robust Segmentation Using Kernel and Spatial Based Fuzzy C-means Methods on Breast X-ray Images

نویسندگان

  • Xuejun Sun
  • Dmitry Goldgof
چکیده

Robust methods for precise segmentation of breast region or volume from breast X-ray images, including mammogram and tomosynthetic image, is crucial for applications of these medical images. However, this task is challenging because the acquired images not only are inherent noisy and inhomogeneous, but there are also connected or overlapped artifacts, or noises on the images as well, due to local volume effect of tissues, parametric resolutions and other physical limitations of the imaging device. This paper proposes and develops robust fuzzy c-means (FCM) segmentation methods for segmentation of breast region on breast x-ray images, including mammography and tomosynthesis, respectively. We develop spatial informationand kernel functionbased FCM methods to differentiate breast area or breast volume. Spatial information based FCM method incorporates neighborhood pixels’ intensities into segmentation because neighbored pixels on an image are highly correlated. Kernel based FCM algorithm is developed by transforming pixel intensity using kernel functions to better improve segmentation performance. The proposed segmentation methods are implemented on mammograms and tomosynthetic images and compared with conventional FCM results. Experiment results demonstrate the proposed segmentation methods are much better compared with traditional FCM method, and are more robust to noises. The developed kernel and spatial based FCM method will be applied for differentiation of breast density and abnormal regions within the breast region to examine its performance in reducing false positive segmentations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-based Fuzzy Clustering Incorporating Spatial Constraints for Image Segmentation

The 'kernel method' has attracted great attention with the development of support vector machine (SVM) and has been studied in a general way. In this paper, we present a kernel-based fuzzy clustering algorithm that exploits the spatial contextual information in image data. The algorithm is realized by modifying the objective function in the conventional fuzzy c-means algorithm using a kernel-in...

متن کامل

Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Generalized Spatial Kernel based Fuzzy C-Means Clustering Algorithm for Image Segmentation

Image segmentation plays an important role in image analysis. It is one of the first and most important tasks in image analysis and computer vision. This proposed system presents a variation of fuzzy cmeans algorithm that provides image clustering. Based on the Mercer kernel, the kernel fuzzy c-means clustering algorithm (KFCM) is derived from the fuzzy c-means clustering algorithm (FCM).The KF...

متن کامل

A novel kernelized fuzzy C-means algorithm with application in medical image segmentation

Image segmentation plays a crucial role in many medical imaging applications. In this paper, we present a novel algorithm for fuzzy segmentation of magnetic resonance imaging (MRI) data. The algorithm is realized by modifying the objective function in the conventional fuzzy C-means (FCM) algorithm using a kernel-induced distance metric and a spatial penalty on the membership functions. Firstly,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009